工程師們剛剛用人工原子制造了一個非常穩(wěn)定的量子硅芯片
Newly created artificial atoms on a silicon chip could become the new basis for quantum computing.
在硅片上新創(chuàng)造的人工原子可能成為量子計算的新基礎(chǔ)。
Engineers in Australia have found a way to make these artificial atoms more stable, which in turn could produce more consistent quantum bits, or qubits - the basic units of information in a quantum system.
澳大利亞的工程師們找到了一種方法,可以使這些人造原子更加穩(wěn)定,從而產(chǎn)生更加一致的量子比特,或稱量子位——量子系統(tǒng)中的基本信息單位。
The research builds on previous work by the team, wherein they produced the very first qubits on a silicon chip, which could process information with over 99 percent accuracy. Now, they have found a way to minimise the error rate caused by imperfections in the silicon.
這項研究建立在該團(tuán)隊之前的工作基礎(chǔ)上,他們在硅片上產(chǎn)生了第一個量子位,其處理信息的準(zhǔn)確率超過99%?,F(xiàn)在,他們找到了一種方法,可以最大限度地降低由硅缺陷引起的錯誤率。
What really excites us about our latest research is that artificial atoms with a higher number of electrons turn out to be much more robust qubits than previously thought possible, meaning they can be reliably used for calculations in quantum computers, said quantum engineer Andrew Dzurak of the University of New South Wales (UNSW) in Australia.
大利亞新南威爾士大學(xué)(UNSW)的量子工程師安德魯·祖拉克(Andrew Dzurak)說:“我們最新的研究真正讓我們興奮的是,電子數(shù)量更高的人造原子比先前認(rèn)為的可能要強(qiáng)大得多,這意味著它們可以可靠地用于量子計算機(jī)的計算。”。
This is significant because qubits based on just one electron can be very unreliable.
“這很重要,因為僅僅基于一個電子的量子位可能非常不可靠。”
In a real atom, electrons whizz in three dimensions around a nucleus. These three-dimensional orbits are called electron shells, and elements can have different numbers of electrons.
在真實的原子中,電子繞著原子核作三維運動。這些三維軌道被稱為電子殼層,元素可以有不同數(shù)量的電子。
Artificial atoms - also known as quantum dots - are nanoscale semiconducting crystals with a space that can trap electrons, and confine their movement in three dimensions, holding them in place with electric fields.
人工原子(也稱為量子點)是一種納米級半導(dǎo)體晶體,其空間可以捕獲電子,并將其運動限制在三維空間內(nèi),通過電場將其固定在適當(dāng)?shù)奈恢谩?/font>
The team created their atoms using a metal surface gate electrode to apply voltage to the silicon, attracting spare electrons from the silicon into the quantum dot.
研究小組用一個金屬表面柵電極來給硅施加電壓,將硅中的多余電子吸引到量子點中,從而創(chuàng)造出原子。
In a real atom, you have a positive charge in the middle, being the nucleus, and then the negatively charged electrons are held around it in three-dimensional orbits, explained solid state physicist Andre Saraiva of UNSW.
新南威爾士大學(xué)的固體物理學(xué)家安德烈·薩拉瓦解釋說:“在真實的原子中,正電荷在原子核的中間,然后帶負(fù)電荷的電子在三維軌道中圍繞原子核運動。”
In our case, rather than the positive nucleus, the positive charge comes from the gate electrode which is separated from the silicon by an insulating barrier of silicon oxide, and then the electrons are suspended underneath it, each orbiting around the centre of the quantum dot. But rather than forming a sphere, they are arranged flat, in a disc.
“在我們的例子中,正電荷不是來自帶正電的原子核,而是來自柵電極,柵電極被氧化硅的絕緣屏障從硅中分離出來,然后電子懸浮在柵電極下,每個電子都繞著量子點的中心旋轉(zhuǎn)。但它們不是形成一個球體,而是平展地排列在一個圓盤里。”
Hydrogen, lithium and sodium are elements that can have just one electron in their electron shell. This is the model used for quantum computing. When the team creates artificial atoms equivalent to hydrogen, lithium and sodium, they can use that single electron as a qubit, the quantum version of a binary bit.
氫、鋰和鈉都是電子殼層中只有一個電子的元素。這是用于量子計算的模型。當(dāng)這個團(tuán)隊創(chuàng)造出相當(dāng)于氫、鋰和鈉的人工原子時,他們就可以用那個電子作為量子位元,也就是二進(jìn)制位的量子版本。
However, unlike binary bits, which process information in one of two states (1 or 0), a qubit can be in the state of a 1, a 0, or both simultaneously - a state called superposition - based on their spin states. This means they can perform parallel computations, rather than do them consecutively, making them a much more powerful computing tool.
然而,與二進(jìn)制位不同的是,二進(jìn)制位以兩種狀態(tài)(1或0)之一處理信息,量子位可以同時處于1、0或兩者的狀態(tài)——一種稱為疊加的狀態(tài)——基于它們的自旋狀態(tài)。這意味著它們可以執(zhí)行并行計算,而不是連續(xù)執(zhí)行,這使它們成為更強(qiáng)大的計算工具。
This is what the team demonstrated previously, but the system wasn't perfect.
這是該團(tuán)隊之前展示的,但是這個系統(tǒng)并不完美。
Up until now, imperfections in silicon devices at the atomic level have disrupted the way qubits behave, leading to unreliable operation and errors, said UNSW quantum engineer Ross Leon.
新南威爾士大學(xué)的量子工程師羅斯·利昂說:“到目前為止,原子水平上的硅器件的缺陷已經(jīng)擾亂了量子位元的行為方式,導(dǎo)致了不可靠的操作和錯誤。”
So, the team turned up the voltage on their gate electrode, which drew in more electrons; these electrons, in turn, mimic heavier atoms, which have multiple electron shells. In the artificial atoms, just as in real atoms, these shells are predictable and well organised.
因此,研究小組提高了柵極上的電壓,從而吸引了更多的電子;這些電子,反過來,模仿更重的原子,有多個電子殼層。在人造原子中,就像在真實原子中一樣,這些殼層是可預(yù)測的,而且組織良好。
When the electrons in either a real atom or our artificial atoms form a complete shell, they align their poles in opposite directions so that the total spin of the system is zero, making them useless as a qubit. But when we add one more electron to start a new shell, this extra electron has a spin that we can now use as a qubit again, Dzurak said.
“當(dāng)一個真正的原子或人造原子中的電子形成一個完整的殼層時,它們將它們的極向相反的方向排列,因此系統(tǒng)的總自旋為零,使得它們作為一個量子位毫無用處。”但是當(dāng)我們再增加一個電子來開始一個新的殼層時,這個額外的電子就有了一個自旋,我們現(xiàn)在又可以把它用作量子位元了,”Dzurak說。
This new set-up also appears to compensate for the errors introduced by atomic-scale imperfections in the silicon chip.
這種新的裝置似乎也彌補(bǔ)了硅片原子尺度上的缺陷所帶來的誤差。
Our new work shows that we can control the spin of electrons in the outer shells of these artificial atoms to give us reliable and stable qubits, said Dzurak.
“我們的新研究表明,我們可以控制這些人造原子外層電子的自旋,從而得到可靠而穩(wěn)定的量子位。”祖拉克說。
This is really important because it means we can now work with much less fragile qubits. One electron is a very fragile thing. However an artificial atom with 5 electrons, or 13 electrons, is much more robust.
“這真的很重要,因為這意味著我們現(xiàn)在可以用更少的脆弱量子位來工作。一個電子是非常脆弱的。然而,一個擁有5個或13個電子的人工原子要健壯得多。”
The research has been published in Nature Communications.
這項研究發(fā)表在《自然通訊》雜志上。
瘋狂英語 英語語法 新概念英語 走遍美國 四級聽力 英語音標(biāo) 英語入門 發(fā)音 美語 四級 新東方 七年級 賴世雄 zero是什么意思營口市美地家園(長征路)英語學(xué)習(xí)交流群