科學(xué)家們剛剛在日常電子產(chǎn)品中創(chuàng)造了量子態(tài)
Quantum computing has the potential to revolutionise the processing power at our fingertips, but for the moment a lot of it is just potential.
量子計算有可能徹底改變我們指尖的處理能力,但就目前而言,它有很多只是潛力。
Researchers have been uncertain on whether we'll ever be able to harness quantum computing in a practical, affordable, realistic way. But we might have an exciting new lead.
研究人員一直不確定我們是否能夠以一種實際的、負擔(dān)得起的、現(xiàn)實的方式利用量子計算。但我們可能會有一個令人興奮的新線索。
Two new studies show how quantum technologies can work with everyday electronics – specifically, transmitting quantum information using devices made from silicon carbide, a material which is already used everywhere from LED lights to telescopes.
兩項新的研究表明了量子技術(shù)如何應(yīng)用于日常電子產(chǎn)品——具體來說,就是利用碳化硅制造的設(shè)備來傳輸量子信息,這種材料已經(jīng)被廣泛應(yīng)用于從LED燈到望遠鏡的各個領(lǐng)域。
Today's quantum computers are, strictly speaking, just scaled-down, prototype versions of what we one day hope quantum computers can be. They require a lot of delicate instruments, exotic materials, careful engineering, and specific conditions in which to operate; you can't just order a laptop version for your home.
今天的量子計算機,嚴格地說,只是縮小了的,原型版本,我們希望有一天量子計算機可以成功。它們需要許多精密的儀器、奇異的材料、精細的工程和操作的具體條件,你不能只在家里訂購一臺筆記本電腦。
The researchers at work. (David Awschalom)What these new studies show is a potential way to bring parts of the quantum computing promise to the electronics that are already in use – although as ever in the quantum realm, there's still a lot of uncertainty.
工作中的研究人員。這些新研究表明,將量子計算的部分前景應(yīng)用于已在使用的電子產(chǎn)品是一種潛在的方式——盡管與以往一樣,在量子領(lǐng)域仍有許多不確定性。
The ability to create and control high-performance quantum bits in commercial electronics was a surprise, says molecular engineer David Awschalom, from the University of Chicago.
芝加哥大學(xué)的分子工程師David Awschalom說:“在商業(yè)電子領(lǐng)域創(chuàng)造和控制高性能量子比特的能力令人吃驚。”
These discoveries have changed the way we think about developing quantum technologies – perhaps we can find a way to use today's electronics to build quantum devices.
“這些發(fā)現(xiàn)改變了我們對發(fā)展量子技術(shù)的看法——也許我們可以找到一種方法,利用今天的電子技術(shù)來建造量子設(shè)備。”
The scientists were able to generate quantum states in silicon carbide that emitted single particles of light, with a wavelength near the telecommunications band. That means our current network infrastructure might not need too much tweaking to carry quantum information.
科學(xué)家們能夠在碳化硅中產(chǎn)生量子態(tài),發(fā)射出單個粒子的光,其波長接近電信波段。這意味著我們目前的網(wǎng)絡(luò)基礎(chǔ)設(shè)施可能不需要太多的調(diào)整來承載量子信息。
In the first study, the scientists created what they called a "quantum FM radio", capable of sending quantum information across long distances with high levels of control.
在第一項研究中,科學(xué)家們創(chuàng)造了他們所稱的“量子調(diào)頻收音機”,能夠在高度控制下遠距離發(fā)送量子信息。
For their second trick, the team used a basic electronics element called a diode to free a quantum signal of noise and make it almost perfectly stable – addressing one of the major problems in quantum computing at the moment.
在他們的第二招中,團隊使用了一種叫做二極管的基本電子元件來釋放量子信號中的噪聲,使其幾乎完全穩(wěn)定——解決了目前量子計算中的一個主要問題。
The diode acts as a one-way switch for electrons excited by the lasers used in the course of quantum experiments, effectively removing the electrons from the system and making the environment much less noisy.
在量子實驗過程中,二極管充當了由激光激發(fā)的電子的單向開關(guān),有效地將電子從系統(tǒng)中移除,使環(huán)境中的噪聲大大降低。
As promising as they are, these advances aren't going to put a quantum laptop on your desk anytime soon – but they do give scientists more hope that quantum computing through classical systems might one day become a reality.
盡管這些進展很有希望,但它們不會很快讓量子筆記本電腦出現(xiàn)在你的桌子上——但它們確實給了科學(xué)家們更多的希望,即通過經(jīng)典系統(tǒng)進行的量子計算有一天可能會成為現(xiàn)實。
In September we saw researchers creating something approaching a quantum computer which could operate at room temperature, and used modified versions of the components found in classic computers, so this is a research area that's gaining momentum.
今年9月,我們看到研究人員發(fā)明了一種接近量子計算機的東西,它可以在室溫下運行,并使用了經(jīng)典計算機中發(fā)現(xiàn)的組件的改良版本,因此這是一個正在發(fā)展的研究領(lǐng)域。
This work brings us one step closer to the realisation of systems capable of storing and distributing quantum information across the world's fibre-optic networks, says Awschalom.
Awschalom說:“這項工作讓我們離實現(xiàn)能夠在全球光纖網(wǎng)絡(luò)中存儲和分發(fā)量子信息的系統(tǒng)又近了一步。”
Such quantum networks would bring about a novel class of technologies allowing for the creation of unhackable communication channels, the teleportation of single electron states and the realisation of a quantum internet.
“這樣的量子網(wǎng)絡(luò)將帶來一種新的技術(shù),允許創(chuàng)建不可攻破的通信通道,實現(xiàn)單電子態(tài)的隱形傳態(tài),實現(xiàn)量子互聯(lián)網(wǎng)。”
The research has been published in Science Advances and Science.
這項研究發(fā)表在《科學(xué)進展與科學(xué)》雜志上。